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There is a common known solitaire game in France: le Morpion. It is
played on a checkered piece of paper with a pencil. At the beginning of
the game the paper contains a so called Maltesian Cross consisting of 36
marked points on its grid. Your aim is to mark as many as possible further
points on this grid. A new point can only be marked, if either a straight
line segment of length five in one of the two diagonal directions or the two
orthogonal directions relative to the grid could be chosen to cover this new
point, provided then this line segment is completely covered by marked points
and at most one single marked point of it is already covered by other line
segments.

We like to put these conditions in a precise mathematical model: Given
the grid Z

2, then we denote by P0 the special start configuration

{(x, y) ∈ Z
2 : 0 ≤ x, y ≤ 9, λ(x, y)}

where λ is the characteristic boolean function of the start configuration which
is defined as

λ(x, y) =















3 6 | x , 3 6 | y : FALSE
3 6 | x , 3 | y : 2 | ⌊x

3
⌋ 6= 3 | ⌊y

3
⌋

3 | x , 3 6 | y : 3 | ⌊x
3
⌋ 6= 2 | ⌊y

3
⌋

3 | x , 3 | y : 3 6 | ⌊x
3
⌋ ∨ 3 6 | ⌊y

3
⌋

using the binary boolean divide-operator | . Then we have r := |P0| = 36.
This configuration P0 has all the (movement-)symmetries of the grid Z

2.

9 . . . o o o o . . .
8 . . . o . . o . . .
7 . . . o . . o . . .
6 o o o o . . o o o o
5 o . . . . . . . . o
4 o . . . . . . . . o
3 o o o o . . o o o o
2 . . . o . . o . . .
1 . . . o . . o . . .
0 . . . o o o o . . .

0 1 2 3 4 5 6 7 8 9

1



Another short description of the set is to consider it as generated by a ”walk”
on the grid which consists of 12 steps. Each step ”adds” 3 further points to
the path and is either a ”turn left” denoted by − or a ”turn right” denoted
by +. Then the total path, i.e. the set P0, can be coded as the sequence
+ −− + −− + −− + −− or any of its cyclic shifts (because the walk de-
scribes a closed path) or its inversion (because ”left” and ”right” are arbitrary
defined). Where on the grid we start our walk, and what the start direction of
the four possibilities (1, 0), (0, 1), (−1, 0), (0,−1) is changes only the position
of the set relative to the coordinate origin, not its geometric form.

Next we need the set L of all line segments of length five to be defined as

{ ((x−hd, y−ht))h∈{-2,-1,0,1,2} : x, y ∈ Z (d, t) ∈ {(1, 0), (0, 1), (1, -1), (1, 1)} }

.
Now we search for an as long as possible sequence ((pi, ℓi))i∈{1,2,...,n} of

pairs of points pi ∈ Z
2 and line segments ℓi ∈ L satisfying the following three

conditions ∀ i ∈ {1, 2, . . . , n}:

i pi /∈ P0 , ∀ j < i : pi 6= pj

ii pi ∈ ℓi , ∀ j < i : |ℓi ∩ ℓj | ≤ 1

iii ∃ i1, i2, i3, i4, i5 ∈ {1, 2, . . . , i} : ℓi = (pi1 , pi2, pi3 , pi4, pi5)

Condition (i) means: add each move a further, previously unmarked point
to the grid. Condition (ii) means: this point must be covered by a new line
segment, but the new line segment is not allowed to have more than one
point in common with any other line segment. and condition (iii) says that
the new line segment must be covered completely by marked points.

An open problem is still to determine the maximal possible value of n.
In this paper we like to show that such an n exists indeed and we give an
upper bound on the maximum n.

For this purpose we define for every k ≤ n an evaluation function fk on
Z

2 depending on the set Pk := P0 ∪ {pi}i∈{1,2,...,k} and the set {ℓi}i∈{1,2,...,k}

of the points and line segments of our sequence ((pi, ℓi))i∈{1,2,...,n}. To do this
we need the for all ℓ ∈ L the notation of

ℓ∗ := (p2, p3, p4) if ℓ = (p1, p2, p3, p4, p5)

which is simply the inner part, consisting of 3 points, of any line segment.
Now we define for every q ∈ Z

2, every k ≤ n and each ((pi, ℓi))i∈{1,2,...,n}

fk(q) = 8δq∈Pk
−

∑

i∈{1,2,...,k}

δq∈ℓi
−

∑

i∈{1,2,...,k}

δq∈ℓ∗i

(1)
with δTRUE = 1 and δFALSE = 0 .
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This implies that holds

∀ k ∈ {1, 2, . . . , n} ∀ q ∈ Z
2 : 0 ≤ fk(q) ≤ 8

where the lower bound is due to the fact that the line segments have 4
possible directions and for each direction there is either at most one full cover
by the middle of a line segment or two half covers by line ends. Moreover,
the fact that for all sequencs ((pi, ℓi))i∈{1,2,...,k} each point pi adds 8 and its
corresponding line ℓi decreases certain fk by 5 + 3 in the summation of (1),
we get — summing fk up over the whole grid —

∀ k :
∑

q∈Z2

fk(q) =
∑

q∈P0

8 = 8r

which is an invariante for each k and any sequence.
Given a fixed k, then a point q ∈ Pk for whichs holds fk(q) = 0 must

be saturated in all 4 directions and must be an inner point of the set Pk.
Thus the set of points with fk > 0 must contain at least the border points of
the configuration of Pk because these can’t be saturated completed in all 4
directions by line segments. Of course this holds for all k′ > k provided Pk′

exists because fk(q) is a monotonic decreasing function in k for fixed q ∈ Pk.
Therefore the set Pk ⊂ Z

2 should have a border measure as low as possible
to maximize n. This leads immediately to a simple upper bound: Giving 8r-
many border points for a subset S the maximization of |S| means S must be
at least a convex set and because it is a subset in Z

2 which points are created
by line segments in only 4 possible directions it must be a convex 2·4 -gon,
namely an octagon. Trivially an octagon has 8 edges, so the full-symmetric
octagon with side length r+1 has exactly 8r border points and a total number
of 7r2 + 4r + 1 points. And with r = 36 this gives our first upper bound of
9217 for Pn ⊂ |S|. A border point of a convex set can be covered only in at
most 5 directions of the 8 possible directions under consideration in the grid
Z

2. Thus we notice that even fk(q) ≥ 3 must hold for any border point of Pn.
Therefore we have at most 8r

3
border points and a total of 7 r2

9
+4 r

3
+1 = 1057

points for the full-symmetric octagon with side length r
3

+ 1.
This rough estimation can be improved by refinement, still assuming we

can cover the inner points of the optimal convex octagon perfectly, such that
only near the border of the octagon f > 0. In detail look at a typical corner
of such an octagon:

. . . . . . .

. . . . . . .

. . . 4 3 3 3

. . 3 1 0 0 0

. 3 1 0 0 0 0
3 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
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Here a dot . indicates a point q /∈ P , having f(q) = 0, else the value f(pi) is
shown. Assuming the horizontal and vertical diameters of the octagon to be
b1 and b2 and the four corner cut-off-sizes to be a1, a2, a3, a4 ≤ min{b1, b2},
we get the condition

3(2b1 + 2b2) − 2(a1 + a2 + a3 + a4) − 4 ≤ 8r (2)

for the border weight.
Under this condition we have to maximize

b1b2 −
∑

j∈{1,2,3,4}

aj(aj + 1)

2
(3)

the total number of points in respect to b1, b2, a1, a2, a3, a4. Without loss of
generality we may assume that b1 ≤ b2 and a1 ≤ a2 ≤ a3 ≤ a4. Because of
the special form of the restriction and the objective function we know that
for the maximum must hold b1 ≤ b2 ≤ b1 + 1 and a1 ≤ a4 ≤ a1 + 1. So,
renaming a1 to a and b1 to b, we rewrite the restriction to

12b + 6β − 8a − 2σ − 4 ≤ 8r

with b2 − b1 = β ∈ {0, 1} and
∑

j aj −a = σ ∈ {0, 1, 2, 3} and have to
maximize

b2 + βb − (a + 1)(2a + σ)

in respect to b, β, a, σ. Because σ and a can be used to get equality in the
restriction while at most increasing the objective function, we get with the
“active” restriction

a = a(b, β) = ⌊
6b + 3β − 2 − 4r

4
⌋ ≥ 0

and
σ = 6b + 3β − 2 − 4r − 4a .

Substituting a and σ in the objective function, keeping in mind that
6b + 3β ≥ 4r + 2 must hold, we yield

max
b,β

b2 + βb − (a(b, β) + 1)(6b + 3β − 4r − 2 − 2a(b, β))

For r = 36, the maximum value 741 is attained with b = 31 and β = 0,
implying a = 10 and σ = 0. Because σ = β = 0 holds this octagon must
be rotational symmetric in Z

2 and moreover b− 2a = a + 1 means it is even
a full symmetric octagon with side length a + 1 consisting of 7a2 + 4a + 1
points.

Remark: If we would drop the requirement that a1, a2, a3, a4 and b1 and
b2 must be integers, we could approximate the solution by knowing that in
the maximum must hold a1 = a2 = a3 = a4, b1 = b2 and the restriction
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6(2b) − 8a − 4 ≤ 8r must hold with equality. Putting this together, we
have to maximize the term b2 − 1

2
((3b − 2r)2 − 1) in b, which means that

2b − (3b − 2r)3 = 0 must hold. Then we would get for the optimal b the
value 6r

7
and the maximal value 4r2

7
+ 1

2
, resulting in the case r = 36 in a

maximal value of 741.0714 . . . as good as our bound on n in the exact all
integer estimation.

To get a better bound we like to estimate the size of Pn better. The
main idea is to use the alignment restriction of the line segments (of length
5). In our model each point q has ”base-costs” of 8 which can be decreased
by line segment covers. Therefore our aim is to cover as many as possible
points with four lines chosen from the four possible directions to push fk(q)
down to 0 for each marked point. Denote the horizontal diameter, this is the
maximal number of lines orthogonal to the x-axis to cover Pn, again by b1

and the vertical diameter, the maximal number of parallel lines to the x-axis
to cover Pn, with b2. Similar let the diameter in the two diagonal directions
be d1 and d2. Then we get a to (3) equivalent formula for the number of
points covered in all four directions to be

b1b2 − ⌊
(b1 + b2 − d1)

2

4
⌋ − ⌊

(b1 + b2 − d2)
2

4
⌋ (4)

Any m+1 successive line segments lying on the same line overlap only at their
end points and thus cover 4(m+1)+1 points, causing a waste of 2 at the end
points for each such line regarding the global

∑

q fk(q). Furthermore because
of this alignment restriction modulo 4, we must have an average excess of
1

4

∑3

i=0
i = 3

2
of uncovered points for each independent line direction. Because

any 2 (but no 3) of the 4 directions are independent, we get at least for the
lines in the other 2 directions these costs for the miss-aligment. Each point
in this excess, which can’t be covered by the line gives a further costs of 2.
Trying to avoid mis-alignment on the first and last lines of each set of parallel
line-covers save at most 3/2 for each set, but on the other hand we have to
pay 2 ·2 costs due to the fact that no line of length 1 is availible for each such
set of paralle line-covers which out-weights this small win – so we neglect
this small effect. Because d1, d2 ≥ max{b1, b2} we can put all together to the
condition

2(b1 + b2 + d1 + d2) + 2(αb1 + (3 − α)b2) ≤ 8r 0 ≤ α ≤ 3 (5)

Maximizing (4) under the asssumption b1 ≤ b2, results in the non-integer
case in the unique solution

b1 =
3

8
r b2 =

6

8
r d1 = d2 =

7

8
r α = 3

which give the maximal value of at most r2+2

4
. The all integer solution for

our case r = 36, give a maximal value of 324 with the two different solutions
b1 = 14, b2 = 26, d1 = d2 = 31, α = 3 and b1 = 13, b2 = 28, d1 = d2 = 32, α =
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3 — for each solution (5) is active. Remark: we had assumed that Pn is a
convex n-gon else (4) would be invalid and thoughts like “average excess”
undefined.

The current, in November 2011, record of n = 178 of a morpion-sequence
was set by Christopher D. Rosin in August 2011. Because always pi ∈ ℓi we
may give ℓi−pi inplace of ℓi. To get an even more compact list of these pairs,
the line segment can be coded unique as a difference ∆i of its center point
from pi and its direction. The four possible directions (1, 0), (0, 1), (1,−1)
and (1, 1) are representated as − , | , / and \ respectively.

Now the sequence of pairs pi, ∆i for this record configuration follows:
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i pi ∆i i pi ∆i i pi ∆i i pi ∆i

1 (3,-1) 2| 2 (4,3) -2− 3 (2,0) 2− 4 (2,7) 0\
5 (5,1) 0\ 6 (5,3) 1− 7 (0,2) 2| 8 (6,-1) 2|
9 (4,1) 0/ 10 (2,1) 2− 11 (7,9) -2− 12 (2,2) 0/

13 (2,4) -2| 14 (4,6) -2− 15 (3,5) -1\ 16 (3,4) 1|
17 (5,6) 1− 18 (4,5) 0\ 19 (5,4) -1/ 20 (6,5) -2\
21 (6,4) 1| 22 (4,2) 0\ 23 (4,4) 0| 24 (7,-1) -2/
25 (1,4) 1− 26 (1,2) 1− 27 (4,-1) -2/ 28 (5,-1) 0−
29 (7,2) -1\ 30 (5,2) -1| 31 (7,4) -2\ 32 (8,2) -2−
33 (4,-2) 2| 34 (7,1) -1\ 35 (8,0) -2/ 36 (7,0) 1|
37 (8,-1) -2/ 38 (1,1) 1/ 39 (1,5) -2| 40 (4,8) -2\
41 (8,1) 0| 42 (8,4) -2− 43 (-1,7) 2/ 44 (5,5) -2\
45 (5,7) -2| 46 (9,1) -2/ 47 (8,10) -2\ 48 (7,5) -2/
49 (8,5) -2− 50 (8,7) -2| 51 (7,7) -2| 52 (4,7) 1−
53 (2,9) 2/ 54 (2,5) 0\ 55 (-1,5) 2− 56 (2,8) -2|
57 (1,7) 0\ 58 (0,7) 1− 59 (-1,8) 2/ 60 (10,1) -2−
61 (9,2) -1/ 62 (10,3) -2\ 63 (11,2) -2/ 64 (9,0) 2|
65 (10,-1) -2/ 66 (10,0) -2− 67 (12,3) -2\ 68 (11,3) -1−
69 (10,2) -1| 70 (11,1) -2/ 71 (12,4) -2\ 72 (12,2) -2−
73 (10,4) 0/ 74 (11,4) -1− 75 (11,5) -2| 76 (12,6) -2\
77 (10,5) 0/ 78 (12,5) -2− 79 (12,7) -2| 80 (11,6) -1\
81 (10,6) 0− 82 (10,7) -2| 83 (11,8) -2\ 84 (11,7) -2\
85 (9,7) 0− 86 (10,8) -2\ 87 (11,9) -2| 88 (8,8) 2/
89 (9,8) -2| 90 (10,9) -2\ 91 (7,8) 2− 92 (5,8) 0−
93 (3,10) 2/ 94 (3,11) -2| 95 (4,10) 2/ 96 (4,11) -2|
97 (5,10) 1/ 98 (5,11) -2| 99 (8,9) 2/ 100 (9,9) 0−

101 (10,10) -2\ 102 (10,11) -2| 103 (9,10) -1\ 104 (8,11) 2/
105 (7,10) -1\ 106 (6,10) -1− 107 (11,10) -2− 108 (7,11) -2|
109 (8,12) -2\ 110 (8,13) -2| 111 (6,12) 2/ 112 (6,11) -2|
113 (9,11) -1− 114 (7,12) -1\ 115 (9,12) -2| 116 (5,12) 2−
117 (4,13) 2/ 118 (7,14) 2/ 119 (6,13) -1\ 120 (7,13) -2\
121 (7,15) -2| 122 (5,13) 1− 123 (2,11) 2− 124 (4,12) 2/
125 (6,14) -1\ 126 (6,15) -2| 127 (5,15) 2/ 128 (5,14) -1|
129 (3,12) 1\ 130 (4,15) 2/ 131 (3,15) 2− 132 (4,14) -1|
133 (3,14) 2− 134 (3,13) 0| 135 (2,16) 2/ 136 (1,9) 2/
137 (1,8) -1| 138 (0,8) 1− 139 (2,10) -1\ 140 (-1,9) 2/
141 (0,9) 1− 142 (0,10) -2| 143 (-1,6) 2\ 144 (-2,7) 2/
145 (1,10) -1\ 146 (-1,10) 2− 147 (-1,11) -2| 148 (-2,11) 2/
149 (2,12) -2| 150 (1,11) 2\ 151 (1,12) 2− 152 (1,13) -2|
153 (0,14) 2/ 154 (0,11) 0− 155 (2,13) -1\ 156 (0,13) 2−
157 (-1,14) 2/ 158 (0,12) 0| 159 (2,14) -1\ 160 (-1,13) 2/
161 (2,15) -1| 162 (1,14) 0− 163 (-1,12) 1\ 164 (0,15) 2/
165 (-1,15) -2| 166 (1,15) 0− 167 (0,16) 2/ 168 (-2,12) 2\
169 (-3,13) 2/ 170 (-3,12) 2− 171 (-2,13) 2/ 172 (1,16) -2\
173 (0,17) 2/ 174 (0,18) -2| 175 (-4,13) 2− 176 (1,17) -2|
177 (-2,14) 1\ 178 (-2,10) 2|

Remark: In our solitaire game we are allowed to cover with lines pointing
in 4 different directions and with line segments of length 5. If the line seg-
ments are shorter than 5, we would generate new points faster than we can
exceed line segments which may enable us to generate infinite sized patterns
for certain start configurations. On the other hand, if the line segments
are longer than 5, we would run out quickly of new line segments availi-
ble to create a new point and cover the point-tuple. Its corresponding sum
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∑

q∈Z2 f ′
k(q) would be a decreasing function in k becoming negative for k

big enough, meaning impossible configurations these sizes. Thus the length
(4 + 1) is well-balanced to the number 4 of allowed directions for covering
line segments.

Border point classification:

. . . . . . . . . . . . . . . .

. . . . 5 3 3 4 . . 6 4 3 3 3 3

. . . . 3 0 0 1 4 . . 3 1 0 0 0

. . . : 2 0 0 0 3 . . . 3 1 0 0

. . . 3 1 0 0 0 3 . . . . 3 1 0

. . 3 1 0 0 0 0 2 : . . . : 1 0

. 5 2 0 0 0 0 0 1 2 3 3 3 2 1 0

. . 3 1 0 0 0 0 0 0 0 0 0 0 0 0

Here a dot . or a colon : indicates a point q /∈ P , having f(q) = 0, else the
value f(pi) is shown. A : indicates a concave corner in the grid. We see,
that ”sharp” vertices has value 5 or 6, and 4 is also a convex corner. 3 is
along the edge, a 180-corner and neighboured points with 1 and 2 indicate
a concave vertex. Adding in a concave corner a further point, will never
increase the total value of

∑

q∈Z2 fk(q), but at every edge or convex corner it
will always! Thus we may cover our (possible non-convex) set Pk always by
a convex octagon S without increasing its invariant value. of the geometry
of an octagon. Next follows a list of figures of all possible octagon vertices
showing its local neigbourhood and indicating their f -value with the ”vertex
point” value indicated in bold:

convex vertices:

. . .

. 7 6

. . .

. . 6

. 7 .

. . .

. . .

. 6 4

. . 3

. . .

. 5 3

. 3 0

. . 3

. 5 2

. . 3

. . 3

. 4 1

. 3 0

”flat” vertices:
. 3 0
. 3 0
. 3 0

. . 3

. 3 1
3 1 0

concave vertices:

3 . . . .
1 3 . . .
0 1 2 3 3
0 0 0 0 0

. . 3 0

. . 2 0
3 2 1 0
0 0 0 0

3 . . . 3
1 3 . 3 1
0 1 1 1 0
0 0 0 0 0

0 3 . . 3
0 2 . 3 1
0 1 1 1 0
0 0 0 0 0

0 3 . 3 0
0 3 . 3 0
0 2 . 2 0
0 1 1 1 0
0 0 0 0 0

. 2 1 0 0
2 . 2 1 0
1 2 . 1 0
0 1 1 1 0
0 0 0 0 0
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vertices description form left to right and top to bottom:

1. convex: degenerated orthogonal top

2. convex: degenerated diagonal top

3. convex: π
4
-radian vertex

4. convex: π
2
-radian orthogonal vertex

5. convex: π
2
-radian diagonal vertex

6. convex: 3π
4

-radian vertex

7. flat: orthogonal edge

8. flat: diagonal edge

9. concave: 5π
4

-radian vertex

10. concave: 3π
2

-radian orthogonal vertex

11. concave: 3π
2

-radian diagonal vertex

12. concave: 7π
4

-radian vertex

13. concave: degenerated orthogonal hole

14. concave: degenerated diagonal hole

Now we could generate all convex triangle, rectangle, 5-gons, 6-gons, 7-
gons and octagons with a given diameter in the directions horizontal, vertical
and the two diagonally, call these values as before b1, b2, d1, d2. All their
border vertices have angles of π

4
, π

2
or 3π

4
.

Remark: Lets generallize the important function (1) for any set S ⊂ Z
2

with the definitions:

f(S) =
∑

q∈S

fS(q) and ∀ q ∈ S : fS(q) = 8 −
∑

|q−p|=1

p∈Z2

δp∈S

Any solution to the morpion-solitaire game can be covered by its octagonal
hull. This unique octagon P has two important attributes: firstly it is a
convex octagon and secondly f(P ) ≤ f(S) where S denotes the covered set
of points of the given solution. The last attribute is due to the fact, that
adding a point q ∈ P, q /∈ S in a concave corner of a solution set S, we have
fP (p) = fS(p) − 1 for at least four different points p ∈ S but fP (q) ≤ 4.

The constructed largest convex octagon with f(P ) = 8r = 288 has di-
ameter 31 and |P | = 741, thus gives an upper limit of n = |P | − r = 705.
But we can place at most 167 horizontal, 167 vertical and two-times 159
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diagonal line segments of length 5 in it. Hence a total of 652 line seg-
ments for this full-symmetric octagon. There are 22323262 convex octagons
with diameter ≤ 48 = 1

2

8r
3
. Of these the unique octagon with sidelengthes

12, 10, 13, 9, 14, 9, 13, 10 which covers 738 points contains the most number
of valid line segments of length 5, namely 665 and satisfies 2l ≤ 8r where l
denotes the total number of lines. See the remark ”a waste of 2” in the sen-
tence following equation (4). Hence 665 is an upper bound for any achievable
morpion-solution.

Next follows a short table of the maximal number of possible moves n(r)
for an appropriate chosen start configuration with given small size r:

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n(r) 0 0 0 1 1 1 2 2 3 4 6 8 12 19 24 35

The values n(r) with r ≥ 10 were determined by complete enumeration of all
(connected) start configurations of size r. A record configuration for r = 16
– where a number i indicates the position of pi and o denotes a point in P0

– is e.g.

. . . . . . . . . . . . . . .

. . 6 1 o o o o o o 5 . . . .

. . o o o 7 9 15 22 25 26 . . . .

. . 10 o 2 11 13 20 24 27 29 . . . .

. . 8 o o 12 16 18 23 28 31 33 . . .

. 3 o o o o 14 17 19 21 30 32 34 35 .

. . . . . . 4 . . . . . . . .

. . . . . . . . . . . . . . .

with its sequence (∆i)1≤i≤35 = ( -2|, 0|, 2−, 2\, -2−, 2−, -1/, 1/, -2−, 0|, 0/,
1|, -2−, 2\, -1/, 0|, 2\, -2−, 2\, 0|, -2−, -1/, 1\, 0|, -1/, -2−, -1/, 1|, -2−,
2\, 1|, 2\, -2−, 2\, -2− ) . Remarkably, the pattern of new chosen points
“walks” from left to right when proceeding from move 11 to move 30. This
could be continued at infinity if a horizontal beam of points, which starts at
the point 6 and proceeds rightwards to infinity, already would has been given
in the start configuration.
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