Morpion Solitaire - Record Grids (5T game)

Rosin's grids of 177 and 178 moves: the new world records

Christopher D. Rosin (Milwaukee, Wisconsin, USA 1971 - ) in 2009 and 2010
(second photo by R. Brenson, Aurora, for Science & Vie, 2010)

August 12, 2011: new record with 178 moves! And again from Chris Rosin, one more move than his previous record announced only three months earlier, using an enhanced variation of the method described in his IJCAI paper. New record immediately announced by Pour La Science's website, also by Tangente N°143 of Nov-Dec 2011 (article p.44). Chris has lived in San Diego, California, since 1992, and is a cofounder of Parity Computing where he is Chief Algorithmist. His personal home page is

August 2011: Chris Rosin's grid of 178 moves
July 2011:
Toby Walsh, Program Chair of IJCAI 2011, giving the award to Chris Rosin for his paper describing his record of 177 moves

May 19, 2011: date of his record of 177 moves, five more moves than his previous record of 2010. At this level, so many supplemental moves is a really extraordinary feat! Chris says he discovered his record January 16, but kept it secret because of his paper submitted to the IJCAI 2011, International Joint Conferences on Artificial Intelligence, Barcelona, Spain, July 2011. Using several microcomputers, he has done 28 runs of his C++ program, each run taking one week. Two runs on 28 gave two different grids of 177 moves. Sciences et Avenir announced this record in their July 2011 issue, page 23.

May 2011: Chris Rosin's grids A and B of 177 moves
When reoriented, these grids are close. See comparisons part.
(click on the images to enlarge them)

  • Look at his IJCAI paper describing his search, and winning a "distinguished paper award". Congratulations Chris!
  • Look also at the video of his interesting talk done at this conference of July 2011: see the first 22 minutes at Or download the video AVI file (1Gb) from the same webpage, then open it with VLC (
  • More info on IJCAI'11 at two websites:

Rosin's grid of 172 moves: the world record from 2010 to 2011

August 16, 2010: date of the previous record from Chris Rosin with 172 moves. With his grid obtained by computer, he is the first to have succeeded to beat the old record of 170 moves done 34 years earlier by C.-H. Bruneau without a computer! And this is tremendous progress with his new algorithm, the previous record obtained by computer having only 146 moves. Five days later, he also beats the 5D record.

August 2010: Chris Rosin's grid of 172 moves

I notice that the road to his 172 moves is very tight: for the moves 132, 134, 135, 136, 144, 145, 150, 168, 170, 171 and 172, there is no other choice. It is the opposite of common sense: we may think that a record should offer several possible moves at each step. In Bruneau’s grid, only the last moves 169 and 170 were unique. Two files detailing Rosin's grid:

Here are some details on the search that Chris Rosin sent me:

I was very happy to publish a paper on his record in Science & Vie, the same French magazine in which Pierre Berloquin published the previous record by Bruneau... 34 years earlier! In my paper, testimonies of C. Rosin, C.-H. Bruneau, P. Berloquin. Thanks to them and also to Hervé Poirier, editor.

Science & Vie, November 2010: publication of Rosin's grid of 172 moves, by Christian Boyer
(click on the images to enlarge them, or download the PDF file, 856Kb)

And here are his two previous grids of 170 moves, equaling the score obtained in 1976 by C.-H. Bruneau (but different from Bruneau's grid):

The two first images are Rosin's grids A and B of 170 moves. I notice that these two grids are very close:
the third image C comes from the image B after rotation and symmetry, now looking like the image A.

Tishchenko's grids of 171 and 172 moves: equalling the world record of 2010

 Dimitri Tishchenko (Gomel, Belarus 1982 - ) in 2011, and one of his structures

April 11, 2011: Dimitri Tishchenko equals the world record of Chris Rosin with a different grid of 172 moves, before Rosin's new record of 177 moves announced one month later. And produces also a good grid of 171 moves. He uses what he calls a move's specific "DNA encoding". Look at his webpage with

Dimitri Tishchenko lives in Victoria, British Columbia, Canada. He works for the Canadian Network for Public Health Intelligence (CNPHI) as a senior web application developer. He has a bachelors degree of computer science honors program from the University of Manitoba. He enjoys making geometric structures out of small neodymium magnetic spheres, and is fascinated by photography. See and

April 2011: Dimitri Tishchenko's grids of 171 and 172 moves
When reoriented, these grids are close. See comparisons part.

On his 172 grid, after move 80, we note that there is only one possible move 81! It is rare that the first imposed move comes so early, here move 81, so we may think that the game will soon finish. In the other good grids, the first imposed moves are 151 (Tishchenko 171), 157 (Rosin 177A), 146 (Rosin 177B), 169 (Bruneau 170), 132 (Rosin 172). Here are some details on his Morpion Solitaire search Dimitri sent me:

Comparison of record grids

(This paragraph and its downladable files were written before Rosin's 178 grid, but all is still right. His new grid, here rotated , has again a lot of similarities compared to his previous 177A and 177B grids)

I note a lot of similarities, comparing the new grids of 2011. In order to better compare the record grids (including Bruneau), I have reoriented all of them, using rotations and symmetries, in the same way, increasing in the same direction.

Bruneau 170,    Rosin 172,    Tishchenko 171,    Rosin 177B,    Tishchenko 172,    Rosin 177A

With the Powerpoint presentation (618Kb), or its equivalent PDF file (811Kb), showing clearly the similarities and differences, we can see that:

Tishchenko and Rosin did not collaborate, and their programs are different. Maybe it means that their methods are closer than we may think, and/or that their resulting grids are now close to "the" optimum grid?

Sending them this remark, here are their reactions, Dimitri:

And Chris:

5T grids done by computer, before Rosin

Before Rosin's grid of 172 moves obtained in 2010, computers were unable to reach very big scores at this 5T game and to beat Bruneau's grid obtained by hand in 1976. The first big computed grids, 117 then 122 moves, were published by Hugues Juillé in his papers of 1995 then 1999, for his PhD thesis at Brandeis University, USA. Later, in January 2003, Pascal Zimmer reached 143 moves. Then in December 2007, Tristan Cazenave, LIASD, University of Paris 8, reached 144 moves:

December 2007: Grid of 144 moves done by computer by Tristan Cazenave

Haruhiko Akiyama (Tokyo, Japan 1987 - ) in 2010

The computing record became 145 moves, reached February 4th 2010 by Haruhiko Akiyama, a student of TUAT (Tokyo University of Agriculture and Technology). Using a modified "nested Monte-Carlo search" (see Cazenave's two papers of 2009), during 21 days he ran his own program written in C on a PC, Intel Core2Duo E8400 at 3.00GHz.

I notice, looking at the grid, that this record by computer can be improved by hand. For example (maybe among other possible improvements), it is easy to get 149 moves:

Zbigniew Galias, Poland, has computed at the end of February 2010 that the last 71 moves of this grid improved at 149 moves are optimal.

February 16th 2010, Haruhiko Akiyama reached 146 moves: his program finally saw my last remark above and ended after 33 days of running. Renumbering the moves, my three other remarks can be again applied and allow to get 149 moves. With his professor Yoshiyuki Kotani, he published a paper in Japanese, reporting his grid of 145 moves (paper submitted before his new grid of 146 moves).

February 2010: Grids of 145 and 146 moves done by computer by Haruhiko Akiyama

Analyzing the symmetrical grids by computer, Michael Quist, USA, found this excellent and very nice grid of 136 moves, only 10 moves less than the above record! He thinks that it should be the best possible score of all symmetrical 5T grids (inversion symmetry like this one, but also diagonal reflection, horizontal reflection, 90-degree rotation, ...).

April 2008: symmetrical grid of 136 moves done by computer by Michael Quist

Jean-Jacques Sibilla, IPGP (Institut de Physique du Globe de Paris),, is doing an interesting search: since 2007, his computer has generated two billion grids (status in October 2013), where the moves are done at random. His main results:

Scores after 34,300,000 random grids, computed by Jean-Jacques Sibilla

© Christian Boyer,